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Abstract 

This report reviews a numerical model for calculating the evolution of a break- 
ing wave. The model is the combination of a modified version of RIPPLE which 
was originally developed at Los Alamos National Laboratory (Kothe et al., 1991) 
and the k — e turbulence model. In the model, finite difference solutions to the in- 
compressible Reynolds equations for the mean flow field and the k -e equations for 
the turbulent field are obtained on a nonuniform mesh. The free surface locations 
are represented by the volume of fluid (VOF) data on the mesh. A two-step projec- 
tion method is used for the mean flow solutions, aided by the incomplete Cholesky 
conjugate gradient technique solving the Poisson equation for the mean pressure 
field. Advections of momentum in Reynolds equations and turbulent kinetic energy 
and dissipation rate in the k — t equations are estimated by the combination of the 
upwind method and the central difference method. Several numerical examples, 
including the runup and rundown of nonbreaking and breaking solitary waves, are 
given. Agreement between the experimental data and the numerical results is very 

good. 

1    Introduction 

Wave transformation phenomena in shallow water are of great theoretical and 
practical importance. Nearshore breaking waves are central to nearly all coastal 
processes, including coastal currents and sediment transport. Breaking waves are 
also responsible for the production of air-bubbles and sea-water droplets, which 
are important in the consideration of the pollutant transport. From the viewpoint 
of fluid mechanics, breaking wave transformation processes still possess many chal- 

lenging but unsolved problems. 
Intensive researches have been performed in the last two decades to study the 

detailed mechanisms of breaking waves. Battjes (1988) summarized both the ex- 
perimental findings and numerical approaches for the breaking waves in the surf 
zone. Although many laboratory experiments have been conducted to measure the 
velocity field and the free-surface profile during the breaking process (e.g.  Stive, 



1980; Mizuguchi, 1986; Skjelbria, 1987; Nadaoka et al., 1989; Ting and Kirby, 1994, 
1995, and 1996), direct numerical solutions for breaking waves are rare. Tliis is 
primarily due to the lack of understanding of turbulent flows associated with wave 

breaking. 
The early approximation of wave breaking simulation stemmed from the numer- 

ical computation of depth averaged equations (DAE), which include both shallow 
water equations (SWE) and Boussinesq equations (Peregrine, 1967). The energy 
dissipation due to the breaking process was incorporated into the equations through 
certain dissipative terms (Abbott et al, 1978; Svendsen et al., 1978). Because 
the dimension is reduced by one in the DAE, the computational expense is much 
cheaper than that for full equations and thus this approach can be carried on rather 
large scale simulation such as tsunami propagation and runup (Liu et al., 1993). 
Even today, it is still a very active research area of modeling wave transformation 
in surf zone with the use of the DAE (Abbott et al., 1985; Zelt, 1991; Karambas 
and Koutitas, 1992; Schäffer et al., 1993; Kobayashi and Karjadi, 1993; Eldeberky 
and Battjes, 1996). By taking advantage of the simple form of the DAE, how- 
ever, we should also realize its limitations. Since the DAE approach requires a 
single value of free surface displacement, this approach cannot predict the detailed 
configuration of the free surface during the breaking. Furthermore, this approach 
cannot provide the information of the generation and transport of vorticity and 
turbulence. These details can only be recovered if the full hydrodynamic equations 

are solved. 
Another important approach to simulate the initiation of wave breaking is to 

employ the potential flow theory. Before a wave breaks, wave motions are es- 
sentially irrotational, except in boundary layer regions. Therefore, the evolution 
process can be described theoretically by a potential flow theory. The potential 
flow with a free surface can be numerically computed with the boundary integral 
equation method (BIEM). The earliest pioneer of using the BIEM to study the 
wave breaking problem is Longuet-Higgins and Cokelet (1976). The method was 
further improved by Dommermuth et al. (1988) and Grilli et al. (1994). With the 
use of the BIEM, the free surface displacement is no longer limited to be single 
valued as in the DAE. The detailed shape of a curled plunging jet can be simulated 
very well and the depth-dependent velocity information is also available. However, 
the BIEM has a severe limitation that the computation cannot continue after the 
plunging jet touches the front free surface. Therefore, many interesting and im- 
portant features of wave breaking such as the generation and transport of vorticity 
and turbulence cannot be studied with the BIEM method. 

Free of all the limitations discussed above, the full Reynolds equations can 
describe the mean (ensemble averaged) motion of any turbulent flow. The Reynolds 
equations have the similar form as the Navier-Stokes equations (NSE) and the 
former is actually the special case of the latter when the flow is laminar. The 
numerical solution to the NSE was studied intensively in 1960's and 1970's.  The 



earliest solver to the NSE together with the Marker and Cell (MAC) method, a 
free surface tracking technique, was proposed by Harlow and Welch (1965)/ The 
method has been continuously improved in the following decades. One of the 
outstanding methods is so called the projection method developed by Chorin in 
1968 and 1969. This method is very robust and will be adapted in our model, 
serving as the basic solver to the Reynolds equations. 

Another important issue concerning breaking wave computations is the free 
surface tracking technique. Considering the complex geometry of the free surface 
during the breaking process, we immediately rule out the traditional height func- 
tion method that requires the free surface displacement to be single valued. The 
MAC method (Harlow and Welch, 1965) does not have the limitation of geome- 
try complexity, but it requires too much storage to save the marker information. 
Because the marker is in general not located at the place where the velocity is de- 
fined, the movement of those markers must be based on the interpolated velocity 
that may lead to rather large accumulated errors. The surface segment method 
(Miyata, 1986) or the surface marker (SM) method (Chen et al., 1991) significantly 
reduces the storage by tracking the markers on the free surface only, but it intro- 
duces additional difficulties of reordering surface marker when the reconnection of 
free surface occurs. Such difficulties may becomes unsolvable when a strong break- 
ing takes place that generates many small droplets and bubbles. Attempting to 
track the density change within each computational cell instead of the free surface 
location, the volume of fluid (VOF) method (Hirt and Nichols, 1981) provides a 
robust alternative for updating the free surface. With the considerations of both 
accuracy and efficiency, we decide to adapt the VOF method in our current model. 

Combining the solver to the NSE, such as the projection method, and free sur- 
face tracking technique, such as the MAC or the VOF method, we can in principle 
solve any laminar flow with free surface, i.e., non breaking wave (Chan and Street, 
1970). For breaking wave, because of the generation of strong turbulence, addi- 
tional turbulence model must be added to represent the effect of turbulence on 
the mean flow motion. In practice, however, the appropriate turbulence models 
are seldom incorporated into the modeling effort mainly because of the additional 
difficulties involved. The poor understanding of turbulence characteristics in break- 
ing waves seriously impedes the choice of right turbulence model. For example, 
Miyata. (1986) tried to simulate wave breaking using the surface segment method 
without including any turbulence model. Wang and Su (1993) also attempted to 
simulate the wave breaking on sloping beaches using the VOF method without 
including any turbulence model. In their models, the energy dissipation due to the 
turbulence is represented by the numerical dissipation partly rather than the ap- 
propriate turbulence model. Such simulations do not provide complete information 
for breaking waves because the important physics of turbulence is not explored in 

the computation. 
In order to account for the turbulence effect on the mean flow, two major tur- 



bulence closure models are available which can in principle describe approximately 
the turbulence generation, transport, and decay. The most complete model is the 
Reynolds stress closure model, which attempts to close the Reynolds stresses trans- 
port equation directly (Launder et ah, 1975). Due to the lack of real understanding 
of turbulence behavior, the closure problem for high order correlation is always a 
challenging subject. This is especially true for the pressure-strain rate correlation 
term, which redistributes the turbulence energy among different directions. In fact, 
based on different assumptions, there are currently at least five different closure 
models for the pressure-strain rate correlation term and three different models for 
the diffusion term (Demuren and Sarkar, 1993). The validation and verification of 
these models for different turbulent flows itself is a very difficult task. 

Xhe k - e model is another important turbulence closure model on the lower 
level than the Reynolds stress closure model (Launder et ah, 1972; Launder and 
Spalding, 1972; Launder and Spalding, 1974; Rodi, 1980). In this model, instead of 
seeking the direct closure of the Reynolds stresses transport equations, the eddy- 
viscosity assumption is made, which relates the Reynolds stresses to k, turbulence 
kinetic energy, e, the dissipation rate of k, and the rates of strain of the mean flow. 
The value of k and c can be obtained by solving the transport equations derived 
from the NSE. The assumption of eddy-viscosity not only reduces the number of 
transport equations (six for the Reynolds stresses closure model but only one for 
the k equation) but also simplifies the closure assumption. However, we must 
realize that such an assumption also limits the application of the model to the 
nearly isotropically diffusive turbulent flow. At the current stage, we decide to use 
k - t model as a preliminary tool. It is our plan to further implement Reynolds 
stress closure model in the future when more turbulence characteristics in breaking 
wave is understood through the experimental and numerical studies. 

In this report we will review a numerical model which calculates the ensemble 
averaged flow field. The free surface is tracked with the use of the VOF method. 
The effects of turbulence are included by coupling the mean momentum equa- 
tions and the transport equations of turbulence kinetic energy and the dissipation 
rate. This approach will allow one to examine the free surface configuration, mean 
velocity and pressure, and the turbulent intensity in broken waves. 

2    Mathematical Formulation 

In this section, the mathematical equations governing the flow motion and turbu- 
lence transport and dissipation will be summarized respectively. 



2.1    Flow Motion Formulation 

2.1.1     Navier-Stokes Equations and Boundary Conditions 

The motions of an incompressible fluid can be described by the Navier-Stokes 

equations in a bounded domain ft: 

p = o (1) 
dui        din        1 dp 1 dTij , . 

dt dxj        p oxi p oxj 

where ij = 1,2,3 for three-dimensional flows. The Navier-Stokes equations rep- 
resent the conservation of mass and momentum per unit mass in which u,- denotes 
the z'-th component of the velocity vector, p the density, p the pressure, g{ the i-th 
component of the gravitational acceleration, and T{J the viscous stress tensor. For 

a Newtonian fluid, Ti3 = 2/xati with p being the viscosity and ai3 = |(§^ + ■$£), 

the rate of strain tensor. Two types of boundary are considered: rigid boundary 
Tr and free-surface boundary Tj. Along the rigid boundary the velocity of the 
boundary, U{, is prescribed and the no-slip boundary condition requires 

Ul = Ui (3) 

On the free surface the continuity of stress components must be required. De- 
noting n as the unit normal on the free surface and n; as the projection of n on 
the x;, the continuity of the normal stress component can be expressed as 

(du;     duj\ ,.-. 
&-+<H=T" (4) 

in which r„ is a prescribed normal stress applied on the free surface and the surface 
tension has been ignored. For three-dimensional problems, two unit tangential 
vectors, tk{k = 1,2), are needed to define the local tangent plane on the free 
surface and t\ is defined as the projection of tk on the x{. If external tangential 
stress components are applied on the free surface, r] and rt

2, the continuity of 

tangential stress components becomes 

4PL+¥)^=Tf • *=i'2 (5) 
\OXj       OXiJ       J 

In addition to the stress continuity boundary condition on the free surface, 
which is also referred to as the dynamic free surface boundary condition, the kine- 
matic boundary condition must also be satisfied.   Before a wave breaks, such a 



boundary condition assumes the velocity continuity that ensures the free surface 
to be material surface. Since a material surface always consists of the same parti- 
cles, the total derivative of any physical property associated with the free surface 
particles, which is expressed as G(f,i), must vanish on the free surface. Thus, 

dG 3G      n ,,, 
— + u,—= 0 (6) 
Ot OXi 

After a wave breaks, the free surface is no long a material surface and equation 
(6) is not valid. In the present model, in conjunction with the volume of fluid 
method, the G function is chosen as the density function, i.e., G(x,t) = p(x,t). 
Equation (6) then becomes a generally true statement for an incompressible fluid, 
before and after the wave breaks. If the density remains a constant, equation (6) 
is satisfied automatically. However, in the volume of fluid method, the density of 
a fluid in each computational cell is defined as the averaged density in the cell. 
Therefore, in the computational cell where the free surface appears, the "density" 
of the fluid is less than the real density of the fluid, while the "density" of the fluid 
in the computational cell occupied by air is zero. By tracking the "density" change 
in each computational cell, one is able to estimate the motion of the free surface. 

2.1.2    Reynolds Equations and Boundary Conditions 

Equations (1) - (6) describe the governing equation and boundary conditions for a 
wide range of flow motions of an incompressible fluid with a free surface, including 
potential flows, laminar and turbulent flows. Once the suitable initial conditions 
for the velocity and pressure field and the boundary configurations are specified, 
the formulation is completed. These equations can be solved directly by numerical 
methods. However, in the case of turbulent flows with high Reynolds number 
(Re), the resolution for small scale turbulent fluctuations is so high that the direct 
numerical simulation (DNS) is extremely difficult. 

An alternative way to understand turbulent flows is to examine the mean (en- 
semble averaged) flow field with the consideration of the influence of turbulence. 
Both the velocity field and the pressure field can be split into mean component 
and turbulent fluctuations as follows: 

U{ = (ui) + u{ (7) 

V = (P) + V (8) 

i = A + i (9) 
p    (p)    p 

in which (  ) denotes the mean quantities and the prime "'" represents the turbulent 
fluctuations.  Therefore, (wj) = (p) = {\) = 0.  By substituting (7), (8), and (9) 



into (1) and (2) and taking the ensemble average of the resulting equations, one 
obtains the governing equations for the mean flow field 

at +{Uj) dx3      (P) dxi   9l   (P) dx3       dxj 

(10) 

-<^>+<^> (11) 
p  OXi p   OXj 

These equations are also called the Reynolds equations. It is noted that com- 
pared with the classical Reynolds equations, there are two additional terms con- 
tributed by the correlations between the density fluctuation and the gradient of 
pressure fluctuation and viscous stress fluctuation. Since we assume the constant 
density within the fluid, these two terms only become significant near the free sur- 
face. At this time, the importance of these correlations is totally unclear to us and 
thus we choose to temporarily neglect them in the following computations. There- 
fore, the only factor that will be taken into account in the mean flow computation 

is the Reynolds stress, 

Rl3 = -{pKu^) (12) 

Since all the solid boundary conditions and dynamic free surface boundary 
conditions are linear in terms of the velocity and pressure, equations (3), (4), and 
(5) apply also to the mean flow field except that all the instantaneous quantities 
are replaced by the corresponding ensemble averaged quantities. As for equation 
(6), since there exist nonlinear terms in the advection of function G(x,t) = p, 
the additional terms will appear in the mean flow equation. After performing the 
ensemble average for equation (6) using the similar procedure to that for the mass 
and momentum conservation equations except for letting p = (p) + p\ we obtain: 

dt dxi dxi 

The right hand side of equation (13) represents the correlation between density 
fluctuations near the free surface and the velocity fluctuations. Again, because of 
the poor understanding of such correlation, we will temporarily neglect it. Equation 
(13) becomes the same as equation (6) except that the mean quantities replace the 
instantaneous quantities. 

It is noted that for the turbulent flow, the free surface of the mean flow is no 
longer clearly defined. The fluctuations of the free surface caused by the velocity 



fluctuations in the neighborhood will generate a region with the finite thickness 
and the variable mean density (p) that ranges from pj to 0 (air). This region can 
be regarded as the mean free surface region. The thickness of this region is entirely 

dependent upon the turbulence intensity. 
Realizing the extreme difficulties of the closure problem for the fluctuations 

of the free surface, we shall neglect this effect by assuming the free surface of 
the mean flow will be clearly defined even in the turbulent flow, which suggests 
(p) = p = pf throughout the fluid. Thus, from here on, the { ) sign for the 
mean density will be dropped. The above approximation enables us to apply 
the constant density assumption within the well-defined computational domain to 
simplify the formulation. For example, the viscous term in equation (11) can now 
be rewritten as g|-(2z/((7ti)) with v = p/p being the kinematic viscosity. In the 

following derivation of k - e model, it is this modified viscous term that will be 
used rather than the original one in equation (11). 

2.2    Turbulence Transport Model 

To solve Reynolds equations for the mean flow, one must relate Reynolds stresses 
to the mean velocity. Extensive research work has been done to seek the proper 
closure model for the Reynolds stresses in the 1970s (e.g. Launder et al. 1972, 
1975). One of the most successful approaches is the k - e model in which k is the 
turbulent kinetic energy and c the turbulent dissipation rate, defined as follows 

* = 5<"^  •  < = «{& <14) 

The basic concept of the k - c closure model is to specify the relation between 
Reynolds stresses and the rates of strain of the mean flow as 

(«;«/> = -2^) + -kSij (15) 

in which vt is the eddy viscosity, depending on the local state of turbulence, and 
&ij is the Kronecker delta. The eddy viscosity is considered as a function of k and 
e. Therefore, the remaining tasks are: (1) the derivation of governing equations 
for k and e, and (2) the specification of the relationship among uu k and e. 

2.2.1    Transport Equation for Turbulent Kinetic Energy, k 

Multiplying the momentum equations for the total velocity (2) by the turbulent 
velocity component, «■, and taking the ensemble average of the resulting equations, 
one obtains a transport equation for the turbulent kinetic energy, k: 

8 



dk    .  . dk       l d (, , ,.P/ ,2 ,\     &2k 
dt^^'dxi ~    Pdx3 V^F/ ' 2X"'   JV '    ö.rf 

The left-hand side of the equation calculates the rate of change of the turbulent 
kinetic energy following the mean flow field. The first term on the right-hand side 
represents turbulent diffusion of k through the turbulent pressure work done and 
the fluxes of kinetic energy. The second term on the right-hand side represents the 
molecular diffusion of k, which is usually much smaller than the turbulent diffusion. 
The third term on the right-hand side denotes the rate of change of k due to the 
working of the Reynolds stresses against the mean flow gradients. Therefore, this 
term represents the exchanges between the mean flow energy and the turbulent 
flow energy and it is also called the production term P. The last term in (16) is 
the energy dissipation rate e caused by the viscous stress. 

The governing equation for k as written in (16) still cannot be solved because 
higher order correlations, {u'-p) and {u'fu'j), are introduced. In principle one could 
derive governing equations for these higher order correlations. Unfortunately, even 
higher correlations will appear in the resulting equations. Certain closure con- 
ditions must be imposed to define the problem. Following Launder k Spalding 
(1972) and Rodi (1980), the turbulent diffusion term in (16) is modeled using a 
gradient-diffusion hypothesis: 

-£(M+S<<x>)-ifö£) w 
in which ak is an empirical diffusion constant. Substituting (14), (15) and (17) in 
(16), one obtains an equation for turbulent kinetic energy, k, 

dk     ,    ,dk        d 
dt dxj      dxj 

tUt  ,    ^ dk +jm+?gä)m-l (18) 
\  OXj OXi   )    OXj ' Gk OXj j 

in which the continuity equation for the mean flow, (10), has been employed. 
To solve the above equation, information on the mean flow field, («,-), which is 
described by the Reynolds equations, (11), and the turbulent dissipation rate e is 
required. Therefore, one needs to derive another equation for e. 

2.2.2    The Transport Equation for Turbulent Dissipation Rate, t 

The e equation can be derived by differentiating the x{ component of the momen- 
tum equation (2), multiplying the resulting equation by vdu'Jdxj, and taking the 
ensemble average of the resulting equation. Thus, 



de de  _ du- du[ du'k 

dt + {Uj)dXj~     Kdxkdx3dx2* 

duk dp 
+ 2u( 

dxi d 

-2v\^'d^Hdxidxk
)) dxk    

2v{Ukdxhxkdx2        
(19j 

Similar to the exact Adequation, (16), the exact e-equation contains many higher 
order correlations. The physical meaning of each term on the right-hand side of 
the equation can be given as follows: The first term represents the production 
by vortex stretching due to the turbulent vorticity. The second term represents 
the viscous dissipation due to the spatial gradients of turbulent vorticity. The 
third term, which is in the form of spatial divergence, represents the molecular and 
turbulent diffusion of e. The last two terms on the right-hand side of (19) represent 
the production due to the interaction between turbulent correlations and the mean 

velocity gradients. 
To close the problem the right-hand side terms of (19) will be approximated. 

First the diffusion terms are modeled by using the gradient-diffusion assumption, 

i.e. 

or r d      (Vt    dt 
Diffusion of e 

dxj \ <7e d 3 , 

where ot is an empirical constant. Secondly, the difference between the production 
and dissipation will be modeled as (Rodi 1980) 

d(ui)     d{uj)\ d(ui) 2 

(Production - Dissipation), -► Cu^t [^~ + ~^~) ~^~ ~ ^J 

in which Cu and C2e are two more empirical coefficients related to production and 
dissipation of e, respectively. It is also noted that the k/c denotes the characteristic 
decay time. Equation (19) can now be simplified to be 

de      .    .  de d   (vtde\ e     (d(ut)      d(Uj}\ d(Ui) e2 

dt     Xj/dxj      dxjXa.dxjJ k     V dx3        dx{ j   dxj k 

From the dimensional analysis, the eddy viscosity has a unit of (length2/time). 
Thus, an empirical relation among vu k and e can be written as 

10 



vt = Cd- (21) 
e 

where Cd is an empirical constant. 
Although the closure assumptions employed in the k — e equations are crude, 

this model has been successfully used to predict many complex flows. The empirical 
coefficients appeared in the model are surprisingly universal. The recommended 

values for these coefficients are (Rodi 1980): 

Cd = 0.09,   Cle = 1.44,   C2e = 1.92,   ak = 1.0,   a£ = 1.3 (22) 

2.2.3    Determinations of the coefficients in k - e model 

Although the coefficients for the k - t model are somehow regarded to be stan- 
dard for many types of turbulent flows, it is still worthwhile to know how these 
coefficients have been determined and what assumptions have been made. These 
assumptions also suggest the limitations of the model and the possibilities for fur- 

ther improvement. 
It is realized that the original k — e equations are derived from the basic flow 

motion equations, i.e., Navier-Stokes equations and Reynolds stresses equations, 
with no additional assumptions. The k — e model, however, consists of a lot as- 
sumptions in order to close the high order correlations. Besides those assumptions 
in the turbulence model, we also assume that the fundamental turbulence char- 
acteristics does not change under different flow fields. For example, we assume 
that the same k-e model with the same coefficients should apply equally to both 
well-developed turbulent flows and transient turbulent flows. The major reason 
to make such assumption is that many turbulence measurements that are used to 
estimate the model parameters can only be performed and analyzed under simple 
and quasi-steady state (well-developed turbulence). While most engineering ap- 
plications of turbulent flows are complicated and transient. The gap between the 
theoretical study of a simple turbulent flow and the practical application of the 
complicated turbulent flows has not been resolved. In our study, we retain the 
above assumption to study the complicated and transient turbulent flow with the 
use of turbulence model whose coefficients are essentially determined under the 

simple situations. 

2.2.3.1 Determination of C2e 

To determine C2t, we will consider the simple dissipative turbulent flow. In 
such flow, there is no mean velocity gradient and thus there is no turbulence 
production. The typical example is one-dimensional grid turbulence in x direction 
that is created by making flow pass certain grid system. If the advection is much 

11 



stronger than diffusion. C2f_ would be the only coefficient appearing in equations 
(18) and (20). For the well developed turbulence, we also neglect the time derivative 
term so that k and e are functions of x only. The simplified equations read: 

(u)^- = -e (23) 
ax 

(u)^ = -cS (24) 
ax k 

The general solution for above equations system are: 

k = fco(l + £x)-n (25) 

e = e0(l+Zx)-n-1 (26) 

with £ and n coefficients and 

C2, = a±i (27) 
n 

The measurement of the decay rate of k in the grid turbulence, -n, indicates that 
C2e lies in the range of 1.8 and 2.0 (Rodi, 1980). In most models, C2e is selected 

to be 1.9. 

2.2.3.2 Determination of Cd 

Next, we turn to estimate the value of Cd, the coefficient that relates the value 
of k and e to eddy viscosity ut. For local equilibrium shear layers that generally 
exist in constant-stress turbulent boundary layers, P = c. Because in the shear 

layer, P = ^<(^)2 = ^ „ , where y is the coordinate normal to the mean flow 

(u), and according to the definition, e = Cj^j-, we have: 

lu'v' 
Ci = ^ j (28) 

According to the measurements, the value of ^~L in such flows is around 0.3 that 

gives Cd = 0.09. 

2.2.3.3 Determination of Cu 

In the log-law region of a fully developed turbulent channel flow, it is assumed 
that P pa e and all the advection is negligible. The mean velocity gradient can be 
expressed as ^ = ^ with y again being the coordinate normal to the mean flow 
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direction, tu = Jrw/p being the frictional velocity, and K = 0.41 being the von 
Karman constant.  ru, is the cross-stream shear stress on the wall.  It is ready to 

2 3 

show that in such a log-law region, the k remains constant over y, k = ^^, e = ^, 

and ul = — {uv). We will discuss this in more detail later when we propose the 
wall boundary condition for the k-e model. With all the assumptions mentioned 
above, the equation for e (20) can be reduced to: 

2 

q^p_ _ 9^-i^f + (Cle - C2c)
C

T = 0 (29) 
ate ay1      oct

l   ay K 

By substituting the solution form for e into the above equation, we obtain: 

Cu = C2t - -^= (30) 

As long as the coefficient Q, C2e, and ac are known, the value of Cu is fixed. At 
this time, we have already determined the value of Cd and C2£, the remaining task 
is then to determine the value of crc so that we can estimate Cu- 

2.2.3.4 Determinations of at and a^ 

It is expected that the value of at and Ok are close to unity that implies that 
both k and e diffuse at roughly the same rate as the mean velocity. By the computer 
optimization (Launder et al., 1972), the value of at and o^ are chosen to be 1.3 
and 1.0, respectively. The value of ut fixes the value of Cu to be 1.49. However, 
in most applications of the k — e model, this coefficient is adapted as 1.44 as first 
appearing in Launder and Spalding (1974). 

2.2.4    Boundary Conditions for k and e 

Although the boundary conditions for the total flow field along the solid boundaries 
and the free surface have been described in (3), (4), and (5), additional boundary 
conditions must be given in terms of k and e. Since the physics of breaking waves 
are not well understood, especially near the free surface, it is extremely difficult to 
prescribe boundary conditions for k and e. For the situations where the external 
forces are absent on the free surface it seems to be reasonable to assume that 
turbulence does not diffuse across the free surface. Consequently, the normal flux 
of k and c should vanish on the free surface, 

dk n dt n fu\ -n; = 0   ,    -—rii = 0 (ol) 
dx;   % '    d 

In theory, the turbulence vanishes at wall which dictates that both k and e 
become zero at wall.  However, in most of practical computations, the resolution 

13 



cannot be so small to resolve the viscous sublayer. Thus, the boundary conditions 
for k and e are generally specified in the turbulent boundary layer instead of right on 
the wall. In the turbulent boundary layer the cross-stream shear stress dominates 
and remains a constant. Invoking the boundary layer approximation, we have: 

(uv) + ^dV^ = 0 (32) 

dy dy2 

where y is the coordinate normal to the wall. By taking the integration from the 
wall to the place out of the viscous layer where the viscous effect can be neglected, 

we have: 

-(«V>|„ = -^U = ir. = «; (33) 

As discussed in section 2.2.3.3, the mean velocity gradient in this region can be 

expressed as: 

d(u) = ^* (34) 
dy       Ky 

Integrating the above equation, we have so called logarithmic-law profile for stream- 

wise velocity: 

<"> = ltn (EW) (35) 
It* K \        V 

where E = 9.0 for a smooth wall. Because the dissipation rate is approximately 
the same as production rate, t = P, from (33) and (34) we have: 

e = -lu'v')^- = ^ (36) 
dy        ny 

From (15) the eddy viscosity ut can be obtained 

[U v 
vt = -- 

dy 

nu*y (37) 

Namely, the eddy viscosity is proportional to the distance from the wall in the 
turbulent boundary layer. Substituting (36) and (37) into (21) yields 
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k = (38) 

Equations (36) and (38) constitute the boundary conditions for k and e at the 

computational points immediately adjacent to the solid boundary. The frictional 

velocity can be found from (35) once the velocity field has been calculated. 

2.3    Summary of Governing Equations 

Before we leave this section, it is useful to have a brief summary of the assumptions 

made so far in deriving the Reynolds equations for mean flow motions and the k — e 

model for turbulence transport. The final formula that will be used in the later 

numerical model will also be presented. Since only the mean quantities are involved 

in the Reynolds equations and k-t model, the symbol for the ensemble average, 

( ), will be dropped from herein for simplicity. By invoking the eddy viscosity 

assumption (15) and neglecting density fluctuations near free surface, equations 

(10) and (11) that governing the mass and momentum conservation of mean flow 

can be rewritten as: 

dui 

dxi 

dui dui 

dt OXj 

1 dp dr, 
--T. \-9i + -x- 
p OXi ox 

»j 

(39) 

(40) 

The density change equation that can be used to track the free surface is written 

as: 

dp ,     dp 
Ot OXi 

The k — e model reads: 

dk dk _   d 
dt      J dxj     dxj 

d 

(Vt   .    ^dk 

Vt        dxj 

de de  _   d   \,j±,    N de 

dt      j dxj     dxj    at        dxj 

dui 

'j 

+ C\tj2vtGij 

+ 2l/t CTjj 

e_        dui      „   c 

k dx -C*T 

(41) 

(42) 

(43) 

and the total stresses ri3 in equation (40) is related to fc, e, and a^ in the following 

way, 

k2 2 
Tij = 2(u + Cd—)<Tij - -kStJ 

Equations (39) to (43) will serve as the governing equations to be solved numeri- 

cally. 
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3    Numerical Model 

In this section, we will review the numerical methods used to solve the turbu- 
lent flow problem as described in the previous section. Currently, we will restrict 
ourselves to the two-dimensional problems only. 

3.1    Schematics of Computational Domain 

The finite difference method will be used throughout the computation. At the 
beginning, the whole computational domain is discretized by the mxn rectangular 
cells as sketched in figure 1. All scalar quantities, i.e., p, k, e, the volume of fluid 
(VOF) function F, and the openness function 0C, are defined in the center of the 
cells. The first three scalars have been introduced before, and the last two scalars 
will be defined later. The vector and vector-related quantities, i.e., the x- and 
y-components of the mean velocities, u, u, and the openness functions on the cell 
faces, 6r and 6t, are defined in the cell faces as shown in figure 1. Again, the last 
two functions will be defined in the following text. 

As mentioned before, the exact location of the free surface will not be pursuited 
in the present model. Instead, the density change in each cell will be tracked so 
that the location of the free surface can be identified. We assume that the density 
is a constant pf for the fluid, and the averaged density in the cell is defined as, 

p = -£Ä- where Vt is the volume of the fluid in the cell and Va is the volume of the 

air in the cell. Before solving the density change equation (41), we further simplify 
the problem by using the normalized averaged density or the VOF function, F = 
p/p/. With the aid of the VOF function, we may identify the cell types readily. 
For example, the empty (E) cell is defined as the cell with F = 0, where the 
computation will be skipped; the surface (S) cell is defined as the cell with F > 0 
and adjacent to at least one empty cell, where the free surface boundary condition 
will be applied; and the interior (I) cell is defined as the cell which has no empty 
neighbour cells, where the main computation will be conducted. 

Another important issue is how to represent the arbitrary shape of solid bound- 
ary. In other models, the solid boundary is generally redefined as sawtooth-shape 
surface to fit the cell boundary (Lemos, 1992). Based on our numerical tests, such 
a treatment may generate the significant spurious reflection during the wave shoal- 
ing. In the current model, the more flexible way to represent the solid boundary, 
partial cell treatment, is adapted. In such treatment, the solid object is modeled 
as the special case of the two-phase flow with infinite density. The openness func- 
tions are introduced at the cell itself and on the cell faces. At the cell center, 6C 

is defined as the ratio of space not occupied by the solid object (thus open to the 
fluid) to the whole cell area. On the cell faces, 9r (8t) is defined as the length open 
to the fluid to the whole length of the right (top) cell boundary. Therefore, similar 
to the VOF function, the openness functions can provide the information whether 
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A\u 

Figure 1: Finite difference meshes and cell classifications in the model 
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the cell is the solid object or obstacle (0), the fluid (air)-solid boundary (FA-O), 
or the fluid (air) domain (FA). The only difference between the VOF function'and 
the openness functions is that the former is a time-varying function and the latter 

are not. 
Figure 1 illustrates the definition of different cell types based on the information 

of the VOF function and openness functions. In the following context, the imple- 
mentation of the VOF function advection and the treatment of solid boundary 
with openness functions will be discussed in more detail. 

3.2    Two-step Projection Method 

The two-step projection method (Chorin 1968, 1969) has been used to solve the 
Reynolds equations. The first step is to introduce an intermediate velocity ü,-, 
which carries the correct vorticity, as 

u"+1-u" 3<   .       .  Or, 
—u 

At 3 dxi    *     d 
+ 9l + -^ (44) 

in which the superscript indicates the time level and At is the time step size. The 
subscripts i,j = 1,2 for two-dimensional problems, i.e., ui — u, u2 = u, Xi = x, 
and yx = y. Therefore (44) is the forward time difference equation of the Reynolds 
equation without the pressure gradient term. The intermediate velocity ut does 
not, in general, satisfy the continuity equation. If all information on the ra-th time 
level is known, (44) is an explicit formula for ü"+1. 

The second step is to project the intermediate velocity field onto a divergence- 

free plane to obtain the final velocity: 

u n+l _ ~n+l 1   3pn+l 
(45) 

At pn   dxi 

0 (46) ö<+1 

dxi 

One can combine (44) and (45) to show that the Reynolds equations are satisfied 
approximately, with pressure gradient being evaluated at the (n + l)-th time level. 
The continuity equation is satisfied by (46). Taking the divergence of (45) and 
applying (46) to the resulting equation yields 

d_ (i dP
n+i\ = \_dvr_ (47) 

dxi \pn   dxi  )      At   dxi 

which is also called the Poisson Pressure Equation (PPE). 
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3.3    Spatial Discretization in Finite Difference Form 

In the two-step projection method the spatial derivations of the velocity compo- 
nents and the pressure field need to be expressed in finite-difference forms. As 
discussed before and shown in figure 1, the present scheme calculates the velocity 
components, u and u, on the vertical and horizontal cell faces, respectively. The 
pressure and other scalars such as fc, e, and the volume of fluid function F are de- 
fined at the cell center. It is noted that in the finite difference form, some variables 
are needed at the place where they are not originally defined. For instance, u at 
the horizontal cell face and v at the vertical cell face. In such circumstances, the 
linear interpolation will be used. The most commonly used interpolated variables 

are given as follows: 

Vi,3 ~ £W.i+5 ^ "«J 

".J+i 

V:,   1    ■   = 

2 _ At/j + Aj+1 

vi+ijAxi + vitjAxi+l 
i+^' Axi + Axi+1 

(50) 

(51) 

Ax,-+i = -(Axi + Axi+i) (52) 

AyJ+i =-{AVj + AyJ+1) (53) 

As appearing in equation (44), all the advection terms and diffusion terms 
will be evaluated at the n-th time step. The advection terms in the x-momentum 
equation uff + ufj| are evaluated at the front (right) face of the cell. The advection 

terms in the y-momentum equation uf^ + uf^, are calculated at the top face of the 

cell (Figure 2). Thus 

du       du I uu, \ i vu, i ,_., 

ox       ay 

In equation (54) one needs to specify the spatial derivatives of the horizontal veloc- 
ity. To calculate these spatial derivations of the horizontal velocity component in 
(54), one can use the combination of the upwind scheme and the central difference 

scheme. For instance 

19 



vi-l,j+l/2 

Ü+3/2 

vi+l,j+l/2 
_ 3-1/2J (iJj 

ui+l/2j+I 

i!,+i/2/'+ij) 

— "*" ui+l/2,j-l 

fi+3/2j 

Figure 2: Momentum control volume for x and y advections 

'du 

dx. 
i+h,j 

\9xJij m 
if^+^>° 
if U: <0 

t+1,.7 

for the upwind scheme. On the other hand 

du" 

dx, H4J 
Ax{ + Axi+i 

for the central difference scheme. In both (56) and (57) 

du 

dx. 

''du 

dx. 

Ax; 

M'+|.i ~ Ui+y 

t+i,j 
Ax,- i+l 

(56) 

(57) 

(58a) 

(58b) 

are defined. Since the upwind scheme usually introduce significant numerical damp- 
ing and the central difference scheme generates numerical instability, a combination 
of these two schemes usually yield a more accurate numerical solution. Thus, the 
general formula for the spatial derivative becomes 
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where 

Similarly 

w here 

'du\ 
1 + a sgn \ui+ijj   Axl+i 

'du 

dx 
*.J 

+ 1 - a sgn (ui+y) 
'd u 

HtoLJ'*" 

Axa = Axl+1 + Axi + a sgn (U1+LJ) (AX1+1 - Ax{) 

+ [l-a sgn („j+i„)] &yH (|f)    , .  , [ /A"« 

Aya = AyJ+, + AVj_i + a sgn (vl+itJ) (Ayj+L - AVj_i) 

and 

fdu\ 

'du\ 

«i+ij+i - ui+y 

A»i+* 
ui+kd ui+kj-i 

Ay? '>-k 

(59) 

(60) 

(61) 

(62) 

(63) 

(64a) 

(64b) 

In the above equations, the coefficient a is the weighting factor between the 
upwind method and the central difference method. When a = 0, the finite differ- 
ence form becomes the central difference, while a = 1, the finite difference form 
becomes the upwind difference. In practice, a is generally selected in the range of 
0.3 to 0.5 to produce the stable and accurate results. The finite difference form for 
the advection terms in the y-momentum equation (55) can be similarly obtained. 

After neglecting the term -§&£,• in the total stresses, which can be lumped into 
the pressure term, the gradients of the total stresses in (44) can be represented by 

the diffusion terms that are written as 
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d_ 

dx 
2(v + vt) 

du 

dx 
+ d_ 

dy 

, (du     dv" 
(65) 

for the x-momentum equation and 

d_ 

dx 
{y + vt) 

' dv     du 

dx     dy/ 
+ _d_ 

dy 
2 (" + "t) -^ dy 

(66) 

for the y-momentum equation. Once again the diffusion of the momentum in 
the x-direction is calculated at the right face of the computational cell, while the 
diffusion in the y-direction is computed at the top face of the cell. The central 
differencing method is used to express the derivatives. Thus, the first term of (65) 
can be written in the following finite differences from 

d_ 

dx 

. du 
2(, + „)^ 

(" + "<)* 

fr+*)WJ (£)»,„■-t^Ufe)« 
Ax, 

Axi+i L 
+U 

U;,3   • — U.-il  ,• "i+i- i 

Axm 
/,J 

«.-J.I,- -«,--ij 

Ax; 
(67a) 

The second term in (65) can be written as 

d_ 

dy 

. (du     dv 
(v + vt)[^- + ^- 

dy ■ 8*j\u<rM{u+*u*"h$+$»M 
(du     dv\ 

(67b) 

in which 

'du      du\ 

Jy + dx)i+1.+ k 

U:,l U;,l i+i-,.7 + 1 "i+ij 

*Vi+i 
+ "i+lj+i - "ij+i 

Ax *+ 
(68a) 

and 

du      dv\ 

dy     dx) .  i .  i 

U.-J.I 
2' 2' 

Ay 
+ 

vi+U-k 
Ui 7-i 

>-\ 
Axi+k 

(68b) 
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Similar finite-difference formulas can be obtained for the diffusion terms in the 

y-momentum equation (66). 
In the second step of the projection method, the Poisson Pressure equation (47) 

needs to be solved. In the two-dimensional form (47) can be rewritten as 

dx \pn   dx  j + dy \pn   dy   ) ~ At \dx     dy) 

Since the pressure is evaluated at the center of the computational cell, the Poisson 
equation is also evaluated at the center. Thus, the left-hand side of the equation 

can be expressed as: 

(70a) 

(70b) 

The right-hand side of (69) is expressed as 

(du     dv\ fij+ki-".--|.i      ^J+i-^-j f70c) 

\dx + dy)iJ Ax( ^ Ay, 

which are the known quantities. In (70a) and (70b) the density on the side of the 
cells can be obtained by the linear interpolation, i.e. 

Pi+hJ Axi + Axi+1 

Substituting (70) and (71) into the Poisson equation yields a set of linear alge- 
braic equations for the pressure field that can be solved by standard matrix solvers. 
In our model, the conjugate gradient method with the preconditioner of incomplete 
Cholesky decomposition is used to solve the resulting sparse and symmetric system 

of equations. 
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3.4    Volume of Fluid Method 

As explained at the beginning of this section, the volume of fluid method is a 
means to identify different types of computational cells and thus can be used to 
track the free surface motion. Letting p(x, y, t) = F(x, y, t)pf and substituting this 
definition and equation (39) into equation (41), we obtain the transport equation 

for F(x,y,t), 

f + JW|<-) (72) 

For a computational cell centered at (i,j) the above equation can be rewritten in 
the following finite-difference form 

ipn+1 
hi 

At 
Axi 

untl ■ 
1     2'' 

R 
Fn 

At 
1,3-ö 

F
B (73) 

in which F%,F£, F$ and F% denote the F values on the right, left, top and bottom 
faces of the computational cell, respectively. Assigning the proper F values on 
each face of the cell requires some information of the free surface configuration. 
For instance, the F values in the computational cells centered at (i,j) as shown in 
figure 3a and 36 are the same. However, the free surface configurations are quite 
different. Even if the velocities on the right face of the computational cells are the 
same, one would expect that more fluids are convected across the face in case (b) 
than in case (a) for small At. For this reason a simple free surface reconstruction 
scheme is needed. In this report, we summarize the Hirt-Nichols algorithm in which 
the free surface is reconstructed either horizontally or vertically in each free-surface 
cell based on the F values at the n-th time step. For the cases shown in figure 
3, the reconstructed free surface profiles are quite different. The general rule is as 

follows 

dF 
dy 
dF 
dx 

> 

> 

dF 
dx 

dF 
dy 

OF 
dx 

dF 
dx 

< 

< 

dF 
dy 

dF 
dy 

i     dF       n and    -r— < 0 
dx 

j     dF       n and    -r— > 0 
dx 

i     dF      n and    -7— < 0 
dy 

A    
dF     n and    -7T- > 0 
dy 

vertical free surface on left side 

vertical free surface on right side 

=$■ horizontal free surface on bottom side 

horizontal free surface on top side 
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0-i,i) (1JI 0+lj) 

idm id 

(a) 

ia, iad 

n-ij) (ij) (i+l,i) 

idm id, iad 
(b) 

ia 

Figure 3: Two types of free surface reconstruction in VOF 

The first derivatives of F can be evaluated by using the central difference 

scheme. For instance 

fdFV 
8x ).. 

miu^-i+miu^i 
Ax 

Ax 

Ax{_± + Axi+, 

«+? ,_2 

2 

Ax. 

Axt_i + Axi+i 
(74) 

in which F"+l ■ is the average value of F at the cell (i + 1, j) using three vertical 

neighboring cells, i.e., 

Fn    ■ — 
F^lJ+lAyj+l + F^Ay, + F^^Ay^ 

Ayj_i + Ayj + AyJ+1 

(75) 

Similar formulas can be obtained for Ffj and F-l_lj. 
Once the free surface orientation is determined, the donor-acceptor method is 

used to advect the F function. For simplicity only the flux in the ^--direction will 
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be discussed. Moreover, the .r-component of the new velocity on the right face 
of the computational cell (i,j) is assumed to be positive, i.e., u"+L > 0. In the 

donor-acceptor method, the cell (i,j) is called the donor cell, while the cell (i + lj) 
is called the acceptor cell. If un+l . < 0, the role of the donor and acceptor cell is 

switched. 
When the free surface configuration in the donor cell is determined to be a 

horizontal surface, the value for F on the right face is assigned to be the same as 
that in the donor cell, i.e. 

FR = Fit = Fu (76) 

On the other hand if the free surface configuration in the donor cell is a vertical 
surface, the FR value should be more strongly influenced by the F value in the 

acceptor cell, i.e. 

FR = F?+1J = F? (77) 

However, this acceptor method may create the so-called over-filling problem in 
some situations. Consider the simple one-dimensional case as shown in case (a) 
of figure 3. The F values in three adjacent cells are FJlhj = 1.0, F£ = 0.8 and 
F-l, =0. In other words, there is a sharp front in the (i,j) cell. If the acceptor 
method is used, equation (77) indicates that FR = 0. 

From the one-dimensional version of (73), one finds that 

in which F"-  = 0.8 and F?  —  1.0.    Therefore, if the Courant number Cr = 
l,J Li 

u^iAt/Ax is greater than 0.2, the F value at the (n + 1) time step will be 
greater than one. To overcome this "over-filling" problem, a corrector term is 
introduced in the acceptor method, i.e. 

FR = Fl + AFn (78) 

where 

AFn = max 

and 

( Fn     —   Fn\ ^Xid       ( pn     _   pn\ 
X1 dm        l ia) „,n+l     A  . K1 dm        ±idl un+l .At 

,0 (79) 
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FL = max{^FTdmiK] (80) 

in which Fpdm denotes the value of F at the cell upstream of the donor cell, which 
is equal to id— 1 when un+[ . > 0. K is a factor used to prevent spurious advection 

2      2 ^ 

of a small amount of fluid and is often set to be 0.1. 

3.5    The k — e equations 

The same nonuniform finite-difference mesh is used to discretize the k — e equations, 
(42) and (43). Both k and e are defined at the center of a computational cell. 
Symbolically, the k - e equations in the finite-difference form can be written as 
(Lemos, 1992): 

ki,J      ~ hi 

& + FkX - FkY = VISk + \ (P?fl + P?tJ - e^f - el3)       (81) 
At 2 

^ " tld + FeX + FeY = VISe + CX^P^1 - C2Ä J1 (82) 
At Kj-j Kjj 

In (81) and (82) the advection terms (FkX, FkY, FeX and FeY), viscous diffusion 
terms (VISk and VISe), and the production terms Pitj need to be defined and 
described in space. Since the expressions of these terms for the k equation are very 
similar to those for the e equation, only the details for the k equation are given 

here. 
First, we examine the advection terms. The x-component of the advection term 

can be written as 

™-(«i)..-<r(S):. 
Note that the derivative of k is evaluated at the n-ih time level, which makes the 
scheme explicit. The finite difference form of the spatial derivative for k, dk/dx, 

is the same as that for du/dx. Thus 

'dk\n 

dxL: 
\+*,sgn{u%1) Ax, i+ 

'dk\n 

d X     ■    1 

+ [l - 7 sgn („#!)] A,H (f\ ]/ 

[Ax,+i + Axt_i + 7 (Ax,+| - Ax,-_i)] (84) 
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w here 

MY      =
kM_JLhl (85) 

dx      ■    l   , AS:.I 
»-Ö 

f ^L | = ^
+hj ~   '"J (86) 

^ /  J+2'J +2 

and 7 is the coefficient weighting the relative importance between the central differ- 
ence and the upwind scheme, similar to a in the finite difference form of momentum 
advection. In the actual computation, 7 is generally chosen to be the unity that 
makes the advection terms discretized by the upwind scheme. Such scheme ensures 
the stable solution for the k equation under any circumstance. However, it is found 
that for most computations, as long as 7 is greater than 0.5, almost the same stable 

solutions will be obtained. 
The y-component of the advection term can be expressed in the similar form 

as (83) 

»■- (-a. -«■ (in 
and 

g)>{[1+^)Mt):H 

I [Ayj+i + Ayj_i + 7 (Ayj+i - Ay^i)] (88) 

in which 

dk\ _ «ffj — Kj-i 

'dk\n    _ K1+1 -K3 

(89) 

(90) 

The viscous term in (81) is defined as: 
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VISk 
dx 

,vt       .dk 

ak dx 
+ 8_ 

dy 
, vt       x dk 

Vfe dy 
(91) 

'•j 

The first term in above equation can be discretized with the central difference 

method, 

d_ 
dx ak       ) ox 

n-    (5 + ")LJ(8)"+iJ-fe + ,')"-tJ-(S)HJ- 

1 

Ax,; Ok 

Axi 

°k       Ji-ij     Aa-t_i 
(92) 

and the second term can be similarly obtained, 

d_ 
dy 

vt       \ dk 

ok      / oy 

(Z+^MM-^^-M^ 
hi 

Ayj 

1 

A%- £- Ki,3+1       K»,J 
7/ \ " tn    — A-™- 

(93) 

where the value of (f-+ "Y defined at the cell face can be obtained with linear 

interpolation, i.e., 

\Ok Ji+lj 

K + ^ij + Aiwia + ^j 
Axi + Axi+1 

(94) 

The production term P,j is evaluated at both the n-th and (n + l)-th time 

steps. At the n-th time step, we have: 

'du' 

I,J 

P.". = v* 

with the following finite difference forms: 

' dv\ f du     dv\ 

^L+H^/U^/,,, (95) 

'du 

dx 

u'.\ i . - u. 
»-Ö.J 

».j 

(96) 
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dv^ |B   K^-KH 

n        vn, i  . - vn i  - 

dx i 1. .              Ax8- 

dyj 
'.-,■              A^ 

-(97) 

(98) 

(99) 

The value of P?fx can be similarly obtained. 
*.j 

3.6    Stability Analysis for Numerical Model 

The governing equations (40) to (43) are essentially the transient advection-diffusion 
equations. The explicit finite difference form for these equations are subject to the 
numerical instability unless certain stability criteria are satisfied. Due to the intrin- 
sic nonlinearity in the governing equations, the general stability analysis method, 
i.e., von Neumann method, is not applicable. In order to overcome this difficulty, 
we first linearize the governing equations and then perform the standard von Neu- 
mann stability analysis to obtain the stability criteria for the linear case: 

At<min JJL ,JLL (100) 
[Ax  Ay\ 

At < min 
(Ax)2(Ayy 

(Ax)2 + (Ay)2 (101) 
2{y + ut) 

The above criteria are obtained by assuming the advection term is discretized 
by upwind scheme. The first criterion arises from the stability requirement for the 
advection term and the second from the diffusion term. In practice, due to the 
effect of nonlinearity and the combination of the central difference method that 
will further restrict the stability condition, some empirical coefficients that are 
less than unity are multiplied to the original time step restriction to ensure the 
practical stability in the computation. These coefficients are ^ for (100) and | for 

(101). 

3.7    Computational Cycle 

Finally, the complete cycle for updating the field variables for one time step is 
summarized as follows: 

1. Compute the tentative velocities using equation (44). 

2. Apply the tentative boundary conditions (tangential stress and divergence free) 
on the free surface as well as the inflow boundary condition if necessary. 
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3. Update the pressure field according to equation (47), which automatically 
incorporates the normal stress boundary condition. 

4. Obtain the final velocities according to equation (45). 

5. Apply again the boundary conditions on the free surface. 

6. Update k and e value using new velocities. 

7. Update the VOF function. 

8. Apply the final boundary condition, mainly to the newly filled, cell that was 
originally empty in the previous time step 

4    Detailed Numerical Treatments in RIPPLE and 
Modifications in Present Model 

In this section, some detailed numerical treatments in RIPPLE will be discussed. 
A few modifications have been made to improve the accuracy of the numerical 
computations. The major modifications appear on the applications of boundary 
conditions on the free surface. Efforts have also been made to improve the accuracy 
of numerical solution to the PPE and the momentum conservation equation near 

the solid boundaries. 

4.1    Boundary Conditions on Free Surface 

In RIPPLE, the velocity field at the new time step for both the interior cells and 
surface cells are obtained by using the projection method. Then the divergence free 
criterion is imposed on the free surface cell to adjust the velocity at the interface 
between the surface cell and empty cell. For example, for cell (i, j), ui+y, «;_ij, 
and v■ ■ i are obtained by the projection method, but u,J+1 is obtained by using the 

divergence free criterion, g + g = 0, which leads to viJ+i = vid_i_ - ^K+i,, - 

w,--ij) (Figure 4). 
In RIPPLE, there is no explicit dynamic boundary conditions applied on the 

free surface. The only criterion enforced on the free surface is divergence free that 
ensures the mass conservation on the free surface. It is found that this approach 
will create large spurious velocity on the free surface that significantly affects the 
accuracy of velocity and vorticity computation nearby. The modifications are made 

in the following aspects: 
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free surface 
att=(n+l)At 
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at t=nAt 

Figure 4: Boundary conditions and new-filled cell treatment on free surface 

4.1.1    Tangential Stress Boundary Conditions 

In our computations, the air effect is neglected so that the tangential stress bound- 
ary condition becomes: |^ + f^- = 0. For nearly horizontal free surface, the above 

equation becomes: g + g = 0. For the cell (i -l,j), conventionally the boundary 

condition is applied at point (i - \,j + \) (Lemos, 1992). Thus, the corresponding 

+ "<■>+r"<-»■>+* = o (Figure 4). The finite difference form becomes: 4-J+ 
2 

—v. 

Ay, + i 
outside fictional tangential velocity u;_i/2j+i can be found from the above expres- 
sion provided that the other three quantities are known. We have found that this 
treatment can still generate large errors in the velocity computations on the free 
surface. The errors in the velocity computation are mainly due to the fact that the 
pressure computed on the free surface usually contains large errors. The errors in 
the pressure computation on free surface cell arise from the fact that in RIPPLE 
the normal stress cannot be applied onto the exact free surface in general when 
the PPE is solved. Fortunately, the pressure computed just one cell away from the 
free surface is very accurate. This phenomenon is caused by the particular method 
in RIPPLE to solve the PPE and will be discussed later in detail. 

Realizing that the pressure computed on the free surface may contain large er- 
rors, which in turn affects the tangential velocity computations, we decide to apply 
the tangential stress boundary condition one cell down from the free surface. For 
instance, for cell (i - 1, j), instead of applying the boundary condition at the point 
(?; _ I j -|-1)7 We apply the boundary condition at the point {i — \,j- f) and obtain 
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«8_ii? by using U;_II7-_I, vitj_i, and v^^^i. By so doing, we obtain the velocities 
between surface cells not by using the projection method, but by employing the 
tangential stress boundary condition. Because the computed pressure of the cell 
beneath the free surface is very accurate, the new way for obtaining the velocity 
on the free surface is much more accurate than the conventional method. 

4.1.2    Newly Filled Cell Treatment 

After updating the VOF function, the new surface cells may be created, which 
were originally empty at the previous time step. RIPPLE fails to apply the correct 
boundary condition for this situation. Chen et al. (1995) addressed this problem 
and proposed the momentum-capturing method to define the velocity for those 
newly filled cells. The basic idea for their method is to assume the newly filled cell 
carries the momentum of its neighborhood. For example, in figure 4, cell (i-1, j + 1) 
is empty at the end of n-th time step but is partially filled at the end of (n + l)-th 
time step. In RIPPLE, U;_i,i+1 = 0 at the end of (n + l)-th time step. This will 

affect the accuracy of velocity computations near the free surface at (n + 2)-th time 
step. On the other hand, Chen et al. (1995) assigned «,-_ij+i = «i-ij at the end 
of (n + l)-th time step that ensures the accuracy of the velocity computation on 
the free surface. Our model follows the same idea as Chen et al.'s to define the 

velocity at the newly filled cells. 

4.2    PPE Computation 
During the computation of PPE, the normal stress boundary condition is naturally 
incorporated. In most of situations, the air effect and the normal stress due to the 
fluid on the free surface is neglected, which simplifies the normal stress condition 
to be p = 0 on the free surface from equation (4). Since the free surface seldom 
passes the cell center where the pressure is defined, the application of the normal 
stress boundary condition on the free surface becomes a challenging task. In the 
MAC method, the accuracy of applying normal stress boundary condition can be 
improved by using the irregular star method (Chan and Street, 1970) and the micro 
cells treatment (Raad et al., 1994). These methods, however, cannot be readily 
extended to the VOF method where the free surface location is not exactly defined. 

Realizing this limitation, RIPPLE uses another approach to treat the normal 
stress boundary condition. Instead of attempting to apply the pressure on the exact 
location of the free surface, the approximation is made to assume the free surface 
cell is the cell with variable density fluid in which the density at the cell center is 
represented by the VOF function, pc = pfF (Figure 5). Such an approximation 
is consistent with the approximation we made before in equations (6), (13), and 
(41) that the free surface has a finite thickness filled by stratified fluids. Thus, 
the free surface is always assumed to be located at the center of empty cell just 
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above the free surface cell during the PPE computation. The above approximation, 
though crude, is simple to use and provides the very accurate pressure solution one 
cell away from the free surface cell. The disadvantage of the method is that the 
pressure computed right in the surface cell may contain large errors. These errors 
may contaminate the tangential velocities computation on the free surface. 

Computed p using 

projection method 

. E 

/ 
5 

/ V 

/ . S 1 4 

1 I 
3 

. I 
2 

bottom 

fictional cell 

1 Pt 

computed p 

Ps=0 

P4=P4.5gAy 

P3=(P3.5+/'4.5)gAy 

P2=(P2.5+ft.5+P4.5)gAy 

Pl=P2 

Figure 5: An example of PPE computations for one-dimensional problem 

To understand why the pressure computed on the free surface may contain large 
errors and the pressure one cell below is almost exactly computed, we will examine 
the following simple example. The one-dimensional case with the still water free 
surface above the fourth cell center (Figure 5) will be examined. The constant grid 
size Ay will be used in the numerical computation. Assuming initially there is no 
flow motion, we expect that the fluid will remain still and the pressure distribution 
should be hydrostatic. Numerically, we hope that by advancing one time step 
from initially still condition, the fluid can stay still and the pressure hydrostatic. 
Following the standard project method described before, we will first find out 
that the tentative velocity without using the pressure information. Then we solve 
the PPE with known tentatively velocity divergence. By imposing the boundary 
condition on the free surface p5 = 0 and on the solid bottom px - p2, it is very 
easy to find the solution to the PPE to be: p4 = PAig^V, Ps = (/>4i +P3f)#Ay, and 
p2 = (p4i +p3i+p2i)gAy. Now, let's inspect the pressure in the cell right beneath 
the free surface, cell 3. Since p is represented by the VOF function p = Fpf and 
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the value of F at the cell face can be obtained by linear interpolation of F in the 
cell center, we may rewrite p3 = pjg[{F4 + ±F3)Ay]. It is ready to show that the 
pressure computed there is exactly hydrostatic and so are all cells beneath. The 
pressure on the free surface is found to be p4 = \F4psgAy. It is ready to observe 
that the pressure computed on the free surface cell may deviate from the true 
pressure and thus can affect the final tangential velocity computation for the two- 
dimensional problem. One effective way to reduce the influence of pressure errors 
is to adapt the new method to apply the tangential stress boundary condition on 
the free surface as introduced in the previous section. 

During the testing of RIPPLE, another error is found in RIPPLE which reduces 
the accuracy of solution to the PPE when a variable mesh size is used. Referring 
back to equation (70a), when the spatial derivative of p at the cell face, for example, 

(&)n+1, is discretized, we will have P;+|~P; .   Instead of using xi+i = f(A:r; + 
\dxJi+y >'+£ 2 

Aa;;+i), which represents a first order accurate discretization for the variable grid, 
RIPPLE uses ir

L— = \(-£- + xr—), which is only zeroth order accurate. 
•+ 

4.2.1    Partial Cell Treatment 

Partial cell treatment is a special tool used in RIPPLE to handle the unstructured 
interior obstacle and solid boundary. As introduced at the beginning of previous 
section, the basic idea behind this technique is that the obstacle can be mod- 
eled as a special case of two-phase flow with infinite density. Compared with the 
conventional way to treat irregular solid wall that creates the saw-tooth shape of 
boundary, partial cell treatment partially block the cell face and cell itself according 
to the real geometry of the boundary. With the use of the partial cell treatment, 
the variables in cells or cell faces are redefined as the multiplication of openness 
coefficients with original variables, representing the mean values there. Near the 
obstacle, the openness coefficients are less than unit that makes the mean quan- 
tities smaller than their original values. The governing equations for the general 

turbulent flow can be rewritten as: 

®M. = o (102) 

SJM + eu Ä = _»£ + tgi +,» (2(, + vM _ | J*   (103) 
dt dxj pdxi dxj 6 OXi 

In RIPPLE, the advection terms is written as d(9£u^ for the conservative 

scheme with one 6 missing. It is found that RIPPLE's approach sometimes causes 
instability during the runup when 6 is small in some location where u; is relatively 
large, while equation (103) eliminates such numerical instability. 
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5    Numerical Examples 

In this section, we will verify our model by performing the numerical experiments 
for a. series of testing problems. These testing problems are in the order of in- 
creasing complexity. The first group of the numerical experiments is for laminar 
flow without turbulence. The purpose of such testing is to demonstrate the capa- 
bility of the solver to the NSE. Without losing generality, we use three examples 
for numerical testing. One is the motion of initially tilting fluid in a rectangular 
tank. The numerical results are compared to the linear wave solution. The second 
example is the solitary wave propagation on the constant water depth. The nu- 
merical results of the wave profiles are compared to the analytical solutions based 
on the Boussinesq equation. The third example is the nonbreaking solitary wave 
runup on a uniform slope. The numerical results are compared to the BIEM results 
based on potential flow theory and experimental measurements. This test shows 
the capability of the partial cell treatment in handling the unstructured bottom 
topography. The second group of the numerical experiments are for turbulence 
flows. The purpose of such testing is to validate the turbulence model used in the 
computation. The validation of the turbulence model is generally very difficult. 
For a well-developed turbulent flow without free surface, the k — e model has been 
sufficiently verified in the previous studies as summarized by Rodi (1980). The 
verification of the k — e model for a transient flow with free surface, however, is 
rarely conducted before. The example we choose is the breaking solitary wave 
runup on beach (Synolakis, 1986; Zelt, 1991). The simulated wave profiles will be 
compared with experimental measurements. 

5.1    Laminar Oscillating Fluids in a Tank 

In this example, flow oscillations in a rectangular tank are simulated. The free 
surface of the fluid in the tank is initially at an inclined position (Figure 6(a)). 
After the initial moment, the fluid begins to move under gravity. Since the flow 
motions are restricted in the tank on both sides, the motions can be decomposed 
into infinite modes of standing waves with the maximum wave length of L — 2W, 
where W is the width of the tank. Mathematically, the free surface displacement 
i](x,t) can be written as: 

rj(x, t) = Y^an s'm(knx) cos(u;n*) (104) 
n=l 

where kn = ^L is the wave number of the n-th mode, un the frequency of the n-th 

mode and can be determined by the dispersion relationship, u>n = ygkn tanh(/c„cQ, 
with d being the still water depth. ani the wave amplitude of the n-th mode, can 
be determined by using the initial condition, 
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sL 
ür 4sin(—-) — 2sm(n7T; .„„v      ,     .........., (105) 

where s is the slope of the initially inclined free surface. The analytical solution 
is accurate as long as the linear wave theory is valid. In the actual computa- 
tions of the analytical solution, 40 modes are used which are sufficient to resolve 
the the free surface variations. In the numerical computations, the width of the 
tank W = 0.2m, the water depth d = 0.04m, and the initial free surface slope 
s = 0.1. Total 40 x 80 meshes (non-uniform in vertical direction) are placed onto 
the computational domain. The time step At is adjusted automatically during 
the computation so that Cr = max(^,^) = 0.3. This guarantees the practi- 
cal stability while at the same time maintains the computational efficiency. The 
molecular viscosity is neglected in the computation to simulate the potential flow. 
It has been shown that such simplification has a negligible effect to the numerical 

results. 
Figures 6(a) to 6(1) give the comparison of the analytical solution (104) and 

(105) to the numerical results. The comparisons show that the numerical results 
agree very well with the analytical solution after about one period for the slowest 
mode, 7\ = — = 0.507s. The small discrepancies in the comparisons could be 
caused by both the linear wave approximation for finite amplitude waves and the 
numerical truncation errors in the finite difference scheme. The VOF method 
behaves very well in tracking free surface, even though there are more than one 
major modes during the motion. Such characteristics of numerical scheme is very 
useful for the breaking wave simulation, where shorter waves are generated during 

the breaking process. 
It is noted that different grid systems varying from 20 x 30 to 80 x 120 have 

been used to check the sensitivity of numerical results to grid system used. It is 
found that the numerical results computed with different grid system are fairly 
close. In the next examples, the similar sensitivity analysis for grid systems has 
also been performed and the final choice of mesh size is determined by considering 
both computational efficiency and numerical accuracy. 

5.2    Solitary Waves Propagation on Constant Water Depth 

The solitary wave propagation on the constant water depth is a classical testing 
problem for a wave simulation model. The solitary wave is a finite amplitude wave 
with the permanent shape. The nonlinearity and frequency dispersion are perfectly 
balanced during the wave propagation. The analytical solution for the wave profile 
can be derived from the Boussinesq equation (Lee et al., 1982), 

?y(x,i) = a sech 
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where a is the wave amplitude and c = yjgd(l + j) is the wave celerity. 
Three cases are investigated in this example, with different ratios of the wave 

amplitude to the still water depth of a/d = 0.1, ajd = 0.2, and a/d = 0.3 The 
still water depth is d = lm for three tests. In the numerical computations, the 
same discretizations of Ax = 0.1m and Ay = 0.01m are used for three tests 
with 0m < x < 100m. The time step At is automatically adjusted during the 
computation to satisfy the stability constraints by both the advection and diffusion 
processes, i.e., equations (100) and (101). The velocity u and v and free surface 
displacement r\ are specified at the left boundary based on the Boussinesq analytical 
solution for a solitary wave (Lee at al, 1982). 

Figure 7 shows the comparisons between the simulated wave profiles and the 
analytical solutions. In Figure 7(a), the case of a/d = 0.1 is presented. It is 
observed that the numerical results agree with the analytical solution perfectly even 
after the propagation of about 100c?. This test verifies the accuracy of the numerical 
model under small value of a/d. Figures 7(b) and 7(c) shows the case of a/d = 0.2 
and a/d = 0.3. It is found that the discrepancies between the numerical results 
and the analytical solutions increase as the increase of a/d, especially after a long 
distance of propagation. These discrepancies could be caused by two factors. One is 
that as the increase of a/d, the numerical dissipation increases accordingly because 
the numerical dissipation rate is proportional to 0(uAx), while u is proportional 
to a/d. On the other hand, as the increase of a/d, the Boussinesq equation, which 
neglects the higher order nonlinear and dispersive terms, may not be sufficient to 
approximate the original NSE. 

5.3    Nonbreaking Solitary Wave Runup on Beach 

In this example, the nonbreaking solitary wave runups on a steep beach with the 
slope of 30° are investigated. The toe of the beach is 6.49m away from the wave 
maker. The still water depth is 0.16m and the wave amplitude is 0.027m. Numer- 
ical computations using BIEM method are performed for the whole domain, from 
the wave-maker to the shoreline. The number of nodes is 121 on the free surface, 
51 along the bottom, 11 on the sloping beach, and 6 on the wave maker. The 
time step is At - 0.01A. The numerical computations using the VOF method is 
performed in a smaller domain near the shoreline with 4.49m < x < 6.99m and 
-0.16?7i < y < 0.11m. The computational domain is discretized with a 250 x 90 
uniform grid systems with Ax = 0.01m and Ay = 0.003m. The fixed time step 
At = 0.0045 is used that produces a stable solution. The velocity u and v and 
free surface displacement r\ are specified at the left boundary similarly to that in 
section 5.2. The velocity is measured by a particle image velocimetry (PIV) system 
(Adrian, 1991). Figure 8 gives the sketch of the computational domain and the 

measurement section. 
The results of the nonbreaking solitary wave are shown in figure 9 which includes 
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Figure 8: Computational domain for VOF and measurement section for PIV 

the VOF, BIEM, and PIV results for the free surface profile and internal velocity. 
Figure 9(a) to 8f show the time series of solitary wave runup, rundown, and re- 
runup on the steep beach. The overall agreement of the free surface profiles between 
the experimental measurements and numerical computations are excellent. The 
comparisons of the internal velocity at different time are also very good. Some 
discrepancies are observed between experimental data and numerical results when 
wave runup reaches its highest point and rundown reaches its lowest point. It 
is noted that the BIEM results and the VOF method results always agree very 
well. Since the BIEM results for potential flow are very accurate, they can serve 
here as the reference for both the experimental measurements by the PIV and the 
numerical results by the VOF method. 

Figure 9(a) shows the snapshot when the wave is climbing up the slope (i = 
6.38s). It is interesting to observe that the particles in the wave front move in the 
same direction as the beach slope orientation. The particles at the farthest runup 
tip possess the maximum velocity. Velocity decreases downward and backward 
due to the negative pressure by the runup wave. In this frame, experimental data 
and numerical results agree very well. Figure 9(b) (t = 6.58s) shows the velocity 
distribution when the wave almost reaches its highest runup point. Except for the 
very small tip that still has the forward and upward velocity, the major portion of 
fluid on the slope has started the rundown process. In this frame, the comparison 
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of velocity field agrees well only in the rear part of wave. Near the wave front, the 
discrepancies between experimental data and numerical results are obvious, mainly 
due to different velocity directions. Such discrepancies imply the existence of phase 
errors. It is found that the PIV system has a timing error in the range of 0.01s. 
Such a small timing error is insignificant normally, considering the wave period 
is in the order of magnitude of Is. However, during the transition from runup 
to rundown, such an error might becomes crucial because the local time scale for 
such transition process is in the order of 0.1s from the experimental measurements. 
Thus, we expect the velocity disagreement in the wave front is most likely caused 
by the timing inaccuracy. 

Figure 9(c) (t = 6.78s) shows that the wave is running down on the beach and 
figure 9(d) (t = 7.18s) shows that the wave is approaching its maximum running 
down point. Both the wave profile and velocity field comparisons are satisfactory 
in these two frames. After wave reaches its maximum rundown point, the positive 
pressure starts to push it back and forms the secondary runup. Such process is 
shown in figure 9(d) (t = 7.38s) and figure 9(e) (t = 7.58s). Small discrepancies 
again show up in velocity field comparison at t = 7.38s when the wave begins 
to climb up the slope. Such discrepancies, which is expected to be caused by 
timing inaccuracy as well as the sensitivity of wave during transition process, is 
diminishing as time precedes. This can be observed in figure 9(f). 

5.4    Breaking Solitary Waves Runup on Beach 

In this example, the breaking solitary runup on the beach is simulated. The detailed 
experimental setup for this testing problem is referred to Synolakis (1986) and Zelt 
(1991). The important parameters are summarized here. The still water depth 
varies from 0.21m to 0.29m. The beach slope is 2.88° and is about 1/20. A solitary 
wave which has a wave height to still water depth ratio of 0.28 was generated. 
Wave gauges were used to record the free surface displacement during the runup 
and rundown. In the VOF computation, the computational domain starts from 
the toe of beach and it is discretized with a 260 x 65 uniform grid system with 
Ax = 0.025m and Ay = 0.005m. The time step is automatically adjusted during 
the computation to satisfy the stability constraints by both advection and diffusion 
processes, i.e., equations (100) and (101). Similar to the previous nonbreaking 
solitary wave, both the velocities and free surface displacement are specified on 
the right boundary based on the analytical solution for solitary wave. Since the 
k — t model is employed during the computations, the specification of the inflow 
boundary conditions for both k and e is necessary. As shown in equation (43), 
both production term and dissipation term for e become singular when k goes to 
zero. Thus, in general low levels of k are enforced in the inflow boundary, i.e., 
k = \Ut

2 with Ut = SC and C the phase velocity of wave in the constant water 
region. In our computation, 8 is chosen to be around 0.003. It is noted, however, 
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the simulation result in the interior region is basically independent of the value of 
S as long as it is small enough. The value of e is calculated using equation (21), for 
example, e = Cd — with vt = (v. In our computation, ( is chosen to be 10. Again, 
the final result is insensitive to the choice of C as long as the calculated e on the 
inflow boundary remains a low level. 

Since the water depth varies in the experiment, the results can only be compared 
after normalization. Following Zelt (1991), the length scale is normalized by the 

water depth and the time scale is normalized by yg/d. Figures 10(a) to 10(h) 
show the comparisons of experimental data and numerical results in terms of the 
free surface profile. The whole process of wave breaking, runup, and rundown is 
provided. The agreement between the simulated wave profiles and experimental 

data is excellent. 
Compared with the numerical results of Zelt (1991) obtained from the Boussi- 

nesq equation and with those of Titov and Synolakis (1995) obtained from shallow 
water equation, our model provides much better prediction, especially during and 
after wave breaks. Their depth-averaged models tend to predict larger reflection 
which is not observed in the experiment and our numerical results (Figure 10(d)). 
The success of the current model is the result of two aspects. First is that our 
model solves the Reynolds equations directly and thus is free of the assumption for 
pressure, which could lead to significant errors during and after the wave breaks. 
Another is that the more elaborated turbulence model, the k — e model, provides 
more realistic turbulence simulation which improves the free surface simulation. 

In figure 11(a) to 11(h), the magnitudes of the turbulent intensity are plotted. 
It is observed that, before the wave breaks, the turbulence is mainly concentrated 
in a very thin layer near the bottom and the quantities of those turbulence is 

relatively small. At tJg/d = 15, wave starts to break and the increasing large 
turbulence is generated on the front face of wave. The time of breaking predicted 
by the numerical model is consistent with what suggested by Zelt (1991). In the 

experiments, the breaking process occurs between tyjg/d — 15 and tyg/d = 20. 
The turbulence generated near the free surface is left over as the broken wave 
moves towards to the beach. The residual turbulence quickly transport to the 
interior region where it starts to dissipate because of the small mean flow velocity 

gradient. This can be observed from t^jgjd = 20 and tygjd — 25. As the wave 
continues to climb to its highest point, the overall turbulence almost disappears 

(tJgjd = 45). The wave then starts to rundown and the turbulence energy begins 
to increase again due to the backward flow motion. The intensity of turbulence, 
however, is relatively smaller than that generated by the violent breaking process 

during the shoaling. This is observed at tyg/d = 50. 
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6 Conclusions 

In this report, we have given a detailed review of the numerical model simulating 
the breaking wave. The numerical accuracy and the capability of the model is 
verified by comparing the simulated results with the available analytical solutions 
and experimental data for both laminar flow and turbulent flow. It is found that for 
the laminar flow, the model can provide very accurate results. For turbulent flow 
such as breaking wave, the comparison for the wave profile is excellent. However, 
the more rigorous validation in terms of turbulence quantities are still needed for 

a complete verification. 
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